Home > Products > BePore Series

BePore Series

Request a quote Contact sales
Download brochure

The BePore Series is an automated BET surface area and porosimetry analyzer that utilizes gas adsorption technology to precisely determine specific surface area and pore size distribution of solids, slurries, and powders. With a compact high-throughput gas line design and an intelligent, precise gas control program, the BePore Series can complete five-point BET tests for 6 samples in just 20 minutes—significantly enhancing testing efficiency.

Features and Benefits

  • Suitable for solid, slurry, and powder samples.
  • Specific surface area measurement range: 0.0005 m2/g and above.
  • Pore size measurement range: 0.35 to 500 nm.
  • Completing five-point BET tests for 6 samples in 20 minutes

Overview

The BePore Series is an automated BET surface area and porosimetry analyzer, also commonly referred to as a gas adsorption analyzer. It is engineered to determine the specific surface area and pore size distribution of solids, slurries and powders.

 

Surface area and porosity are critical physical characteristics influencing the quality and utility of solid (powder) materials. Gas adsorption analysis is widely utilized for evaluating surface area and porosity. And the BET method is the most frequently employed analytical technique, which calculates the surface area from the adsorption isotherm.

 

Understanding the BePore Series: Features & Advantages 

Technical Advantages

 

  • Specific surface area: 0.0005 m2/g and above
  • Pore size: 2~500 nm precise analysis; 0.35~2 nm routine analysis
  • P/P0 range:10-5~0.999
  • Repeatability: BET(RSD)≤ 1.0 %; Median Pore Size≤ 0.15 nm
  • Test efficiency: 6-station parallel test

 

High-throughput & Rapid analysis 

  — Complete five-point BET tests for 6 samples in just 20 minutes!

 

Structure Advantages

 

Dual-module design

  • 3 analysis stations and 1 P0 station for each module

 

Left and right dual-module independent control

  • Left and right modules can start testing at different times, greatly improving test flexibility
  • Support testing two gases at the same time, to meet a variety of testing needs

BePore-Series-details

Protective door

  • Circular swivel door, hidden inside the equipment when open, easy operation and space saving
  • Close the door to form a confined space during the test to effectively minimize the impact of environment fluctuations on the test.
  • Safety protection

 

Status indication

  • Indicator lights provide intuitive feedback on current equipment status

 

Cold volume control

  • 3L Dewar bottle
  • Isothermal jacket

Powerful Control & Analysis Software

  • Quick-access shortcut button enables faster test initiation.
  • Template-based operation eliminates repetitive parameter configuration.
  • Flexible parameter settings allow customization at each testing stage, accommodating specialized sample requirements.
  • Clear, intuitive visualization of test progress highlights the current testing step in real time.
  • Interactive data processing ensures ease of use and immediate display of test results.


 

Applications 

 

  • Battery

Lithium/Sodium-ion battery anode and cathode materials, precursor materials, conductive agents, separator (diaphragm) materials, etc.

 

  • Ceramics & Electronics

Oxides, nitrides, carbides, metal ceramics, electronic ceramics, composite ceramics, etc.

 

  • Biomedical

Magnesium stearate, aluminum hydroxide, montmorillonite, EDTA blood anticoagulant, pazopanib, etc.

 

  • Environmental Protection

Calcium-based materials such as calcium hydroxide and calcium oxide, activated carbon and other carbon-based materials, molecular sieves, etc.

 

  • Catalytic

Molecular sieves, titanium dioxide, metal-organic frameworks (MOFs), metal-based co-catalysts, etc.

 

  • Building Materials

Calcium carbonate, silica fume, quartz sand, concrete admixtures, additive materials, etc.

 

 

 

Citations

  • Bettersizer 2600

    Functional redundancy as an indicator for evaluating functional diversity of macrobenthos under the mussel raft farm near Gouqi Island

    DOI: 10.1016/j.aquaculture.2023.740024 Read Article Go logo
    Zhejiang Ocean University | 2024
    Biological traits analysis (BTA) helps to evaluate the effects of different environmental variables on the traits-based functional composition of macrobenthos. However, research on functional traits of macrobenthos under mussel farming is limited. We investigated the spatial and temporal response of the benthic system in terms of taxonomic and functional diversity to environmental variables of farming and natural stressors resulting from suspended mussel farming near Gouqi Island of eastern China Sea. The functional traits of macrobenthic assemblages under mussel farming were characterized by “medium adult body size”, “vermiform body form”, “high flexibility”, “infauna”, “semi-motile”, “gonochoristic”, “surface deposit-feeders”, “carnivores”, “semi-motile burrowers”, and “tube-dwellers”. Functional redundancy was stable in response to mussel farming stresses among seasons, whereas species diversity showed efficient to evaluate natural variables. Functional diversity was significantly affected by farming stressors rather than natural variables, Further analysis using multivariate methods together with continuous monitoring were highlighted to evaluate the impacts of mussel farming. Our results reinforce the importance of macrobenthic species and functional traits analysis to evaluate human stresses driven impacts in offshore ecosystems. By analysing the environmental variables with different sources, independently, we concluded the main effects of human pressures on macrobenthic community. Such distinction could be particularly effective to isolate variable environmental descriptors and evaluate their effects on functional diversity, making the current approach promising for the evaluation of ecological effects of anthropogenic stressors in aquaculture areas.
  • Bettersizer 2600

    Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas

    DOI: 10.1016/j.seppur.2023.125621 Read Article Go logo
    China University of Petroleum | 2024

    In this study, various types of degradation as well as attrition which are possibly encountered in a circulating fluidized bed temperature swing adsorption (CFB-TSA) process, were conducted experimentally to evaluate the stability of a resin-based solid amine sorbent. Other characterizations methods, such as elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR) etc. were applied to further reveal the degradation mechanisms. The results showed that thermal degradation occurs from 140–160 °C due to the decomposition of amine group. The CO2-induced degradation occurs from a higher temperature of 160–180 °C accompanied by the production of urea. Hydrothermal stability is good below 130 °C, but the ionic impurities in steam crystalized on particle surface can accelerate the degradation. Oxidative degradation is the most harmful, which starts at a lower temperature of 70–80 °C with the formation of aldehyde. The existence of H2O in atmosphere can alleviate the oxidative and CO2-induced degradations. The employed sorbent has a very low attrition index of 0.05, which is 1–2 orders lower than typical commercial fluidized bed catalysts. Based on the results of stability evaluation, some design suggestions for proper utilization of this sorbent or other similar resin-based sorbents have been provided in an industrial CFB-TSA process.

  • Bettersizer 2600

    De-branching of starch molecules enhanced the complexation with chitosan and its potential utilization for delivering hydrophobic compounds

    DOI: 10.1016/j.foodhyd.2023.109498 Read Article Go logo
    Shihezi University | 2024
    The current study aimed to prepare the complexes between debranched-waxy corn starch and chitosan polymers (DBS-CS), and then investigated their corresponding structural characteristics, rheological property and potent application in Pickering emulsion. The results indicated that the existence of chitosan significantly inhibited starch short-range molecular rearrangement for all DBS-CS samples, which was manipulated by both debranching treatment and chitosan content. Interestingly, this is the first study to reveal that the outstanding peak at 1.8 ppm in 1H NMR spectrum for sample DBS-CS was gradually shifted towards a lower-field region following an increased chitosan content. Moreover, the debranching treatment shifted the crystallinity pattern from A-type to B-type and the relative crystallinity of DBS-CS decreased gradually with the increased content of CS. All samples had a pseudoplastic fluid and shear-thinning behavior with an enhanced shear resistance following the complexation. The DBS-CS was applied in a Pickering emulsion for showing a greater emulsifying stability and a lower gel strength than native NS-CS prepared emulsion. Importantly, the encapsulation ability of curcumin in the DBS-CS emulsion was significantly improved, followed by an increase of 15.45% for its corresponding bioavailability compared to the control. Therefore, this study might highlight a potential carrier for delivering the bioactive substances in a green pattern.
  • Bettersizer 2600

    Heat-induced aggregation behavior of wheat gluten after adding citrus pectin with different esterification degree

    DOI: 10.1016/j.foodhyd.2023.109420 Read Article Go logo
    Gansu Agricultural University | 2024
    Wheat gluten aggregation during heat treatment is beneficial to the final quality of gluten-based products. Exogenous pectin can affect gluten aggregation. However, the effect of pectin with different degrees of esterification on the heat-induced aggregation behavior of gluten and its possible mechanism are still unclear. Thus, the heat-induced aggregation behavior of gluten after adding pectin with different esterification degree was studied in this study. When the temperature was raised from 25 °C to 95 °C, pectin affected gluten aggregation and was related to the degree of esterification. Specifically, the results of rheological properties and particle size indicated that low-ester pectin improved the viscoelasticity of gluten and promoted gluten aggregation. Thermal properties revealed that enthalpy of gluten added with low-ester pectin (37%) increased from 92.96 J/g to 95.40 J/g during heating process. Structurally, the fluorescence intensity and surface hydrophobicity of gluten added with low-ester pectin (37%) were lower than those added with high-ester pectin (73%). In addition, low-ester pectin (37%) significantly increased the disulfide bond content (from 15.31 μmol/g to 18.06 μmol/g) and maintained β-sheet content of gluten compared with gluten alone at 95 °C, indicating that low-ester pectin was more likely to induce gluten aggregation. However, scanning electron microscope showed that the gluten added with low-ester pectin (46%) exhibited a denser network structure at 95 °C than that added with low-ester pectin (37%). These results will provide a theoretical base for the regulation of gluten aggregation and the quality of gluten-based products by pectin with different esterification degree.
Page 1 of 84
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 84
Go to

Related Instruments

  • BeNano 180 Zeta Pro

    BeNano 180 Zeta Pro

    Nanoparticle Size and Zeta Potential Analyzer

    Technology: Dynamic Light Scattering, Electrophoretic Light Scattering, Static Light Scattering

  • Bettersizer 2600

    Bettersizer 2600

    Laser Diffraction Particle Size Analyzer

    Measurement range: 0.02 - 2,600μm (Wet dispersion)

    Measurement range: 0.1 - 2,600μm (Dry dispersion)

    Measurement range: 2 - 3,500μm (Dynamic imaging)