bettersize
Início > Setores > Produtos químicos
Chemicals banner

Produtos químicos

Os instrumentos Bettersize são amplamente utilizados no estudo e no controle da produção do tamanho e do formato das partículas e das características do pó de produtos químicos.

 

 

Para desenvolver e otimizar a produção de materiais químicos, é necessário monitorar uma série de propriedades físicas dos produtos químicos, incluindo o tamanho e a forma das partículas e as características do pó.

 

 

Os polímeros e plásticos compreendem aproximadamente o maior setor da produção do setor químico em todo o mundo. Os principais produtos são o polietileno, o polipropileno, o cloreto de polivinila, o tereftalato de polietileno, o poliestireno e o policarbonato. A medição do tamanho das partículas desses materiais desempenha um papel muito importante durante sua produção e P&D.

 

 

Os principais mercados para plásticos são os de embalagens, seguidos por construção de casas, contêineres, eletrodomésticos, tubos, transporte, brinquedos e jogos.

 

O produto de polímero de maior volume, o polietileno (PE), é usado principalmente em filmes para embalagens, garrafas de leite, contêineres e tubos.
O cloreto de polivinila (PVC), outro produto de grande volume, é usado principalmente para fabricar tubulações para os mercados de construção, bem como materiais de revestimento, transporte e embalagem.
O polipropileno (PP), semelhante em volume ao PVC, é usado em mercados que vão desde embalagens, eletrodomésticos e contêineres até roupas e carpetes.
O poliestireno (PS), outro plástico de grande volume, é usado principalmente em eletrodomésticos, embalagens e, especialmente, como um recurso de segurança para a proteção de automóveis para reduzir as consequências de um acidente.
As principais fibras sintéticas incluem poliéster, náilon, polipropileno e acrílicos, com aplicações que incluem vestuário, mobiliário doméstico e outros usos industriais e de consumo.

 

 

Outros produtos químicos incluem:
borracha sintética, surfactantes, corantes e pigmentos, terebintina, resinas, negro de fumo, explosivos e produtos de borracha.
Os produtos químicos inorgânicos incluem sal, soda cáustica, carbonato de sódio, ácidos (como ácido nítrico, ácido fosfórico e ácido sulfúrico) e dióxido de titânio.
Os fertilizantes são a menor categoria, incluindo fosfatos, amônia e produtos químicos de potássio.

 

 

Os equipamentos de processo usados para fabricar plásticos incluem moldes de injeção, moldes de compressão, extrusoras e moldes rotacionais. Comum a todos esses processos é o fato de um pellet ou pó ser usado como material inicial. As características do material de alimentação devem atender a determinados critérios, como o ponto de fusão. Além disso, a composição química, a resistência à flexão, a resistência à compressão, a resistência ao impacto, a densidade, a resistência química e a resistência à tração conferem ao artigo resultante suas características. O tamanho das partículas dos pellets contribui significativamente para a processabilidade do polímero. A fluidez do funil e a taxa de fusão quando aquecido têm um efeito direto na velocidade do processo. As partículas (pellets) são geralmente produzidas na faixa de 200 a 2.000 mícrons para transporte e aplicação.

 

 

Para promover o desenvolvimento do setor, serão necessários melhores métodos de medição do tamanho das partículas. Então, que tipo de métodos de análise de tamanho de partículaserão melhores? O analisador de partículas a laser Bettersize pode ajudar no desenvolvimento de produtos químicos nos seguintes aspectos:

 

Medição do tamanho da partícula, do formato da partícula, das características do pó e de outras propriedades dos materiais
Medição de produtos de referência para garantir seu desempenho e estabilidade
Controle de qualidade para garantir a conformidade com os padrões regulatórios
Desenvolvimento de materiais de embalagem adequados

 

Leia mais

Citations

  • Bettersizer 2600

    Functional redundancy as an indicator for evaluating functional diversity of macrobenthos under the mussel raft farm near Gouqi Island

    DOI: 10.1016/j.aquaculture.2023.740024 Read Article Go logo
    Zhejiang Ocean University | 2024
    Biological traits analysis (BTA) helps to evaluate the effects of different environmental variables on the traits-based functional composition of macrobenthos. However, research on functional traits of macrobenthos under mussel farming is limited. We investigated the spatial and temporal response of the benthic system in terms of taxonomic and functional diversity to environmental variables of farming and natural stressors resulting from suspended mussel farming near Gouqi Island of eastern China Sea. The functional traits of macrobenthic assemblages under mussel farming were characterized by “medium adult body size”, “vermiform body form”, “high flexibility”, “infauna”, “semi-motile”, “gonochoristic”, “surface deposit-feeders”, “carnivores”, “semi-motile burrowers”, and “tube-dwellers”. Functional redundancy was stable in response to mussel farming stresses among seasons, whereas species diversity showed efficient to evaluate natural variables. Functional diversity was significantly affected by farming stressors rather than natural variables, Further analysis using multivariate methods together with continuous monitoring were highlighted to evaluate the impacts of mussel farming. Our results reinforce the importance of macrobenthic species and functional traits analysis to evaluate human stresses driven impacts in offshore ecosystems. By analysing the environmental variables with different sources, independently, we concluded the main effects of human pressures on macrobenthic community. Such distinction could be particularly effective to isolate variable environmental descriptors and evaluate their effects on functional diversity, making the current approach promising for the evaluation of ecological effects of anthropogenic stressors in aquaculture areas.
  • Bettersizer 2600

    Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas

    DOI: 10.1016/j.seppur.2023.125621 Read Article Go logo
    China University of Petroleum | 2024

    In this study, various types of degradation as well as attrition which are possibly encountered in a circulating fluidized bed temperature swing adsorption (CFB-TSA) process, were conducted experimentally to evaluate the stability of a resin-based solid amine sorbent. Other characterizations methods, such as elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR) etc. were applied to further reveal the degradation mechanisms. The results showed that thermal degradation occurs from 140–160 °C due to the decomposition of amine group. The CO2-induced degradation occurs from a higher temperature of 160–180 °C accompanied by the production of urea. Hydrothermal stability is good below 130 °C, but the ionic impurities in steam crystalized on particle surface can accelerate the degradation. Oxidative degradation is the most harmful, which starts at a lower temperature of 70–80 °C with the formation of aldehyde. The existence of H2O in atmosphere can alleviate the oxidative and CO2-induced degradations. The employed sorbent has a very low attrition index of 0.05, which is 1–2 orders lower than typical commercial fluidized bed catalysts. Based on the results of stability evaluation, some design suggestions for proper utilization of this sorbent or other similar resin-based sorbents have been provided in an industrial CFB-TSA process.

  • Bettersizer 2600

    De-branching of starch molecules enhanced the complexation with chitosan and its potential utilization for delivering hydrophobic compounds

    DOI: 10.1016/j.foodhyd.2023.109498 Read Article Go logo
    Shihezi University | 2024
    The current study aimed to prepare the complexes between debranched-waxy corn starch and chitosan polymers (DBS-CS), and then investigated their corresponding structural characteristics, rheological property and potent application in Pickering emulsion. The results indicated that the existence of chitosan significantly inhibited starch short-range molecular rearrangement for all DBS-CS samples, which was manipulated by both debranching treatment and chitosan content. Interestingly, this is the first study to reveal that the outstanding peak at 1.8 ppm in 1H NMR spectrum for sample DBS-CS was gradually shifted towards a lower-field region following an increased chitosan content. Moreover, the debranching treatment shifted the crystallinity pattern from A-type to B-type and the relative crystallinity of DBS-CS decreased gradually with the increased content of CS. All samples had a pseudoplastic fluid and shear-thinning behavior with an enhanced shear resistance following the complexation. The DBS-CS was applied in a Pickering emulsion for showing a greater emulsifying stability and a lower gel strength than native NS-CS prepared emulsion. Importantly, the encapsulation ability of curcumin in the DBS-CS emulsion was significantly improved, followed by an increase of 15.45% for its corresponding bioavailability compared to the control. Therefore, this study might highlight a potential carrier for delivering the bioactive substances in a green pattern.
  • Bettersizer 2600

    Heat-induced aggregation behavior of wheat gluten after adding citrus pectin with different esterification degree

    DOI: 10.1016/j.foodhyd.2023.109420 Read Article Go logo
    Gansu Agricultural University | 2024
    Wheat gluten aggregation during heat treatment is beneficial to the final quality of gluten-based products. Exogenous pectin can affect gluten aggregation. However, the effect of pectin with different degrees of esterification on the heat-induced aggregation behavior of gluten and its possible mechanism are still unclear. Thus, the heat-induced aggregation behavior of gluten after adding pectin with different esterification degree was studied in this study. When the temperature was raised from 25 °C to 95 °C, pectin affected gluten aggregation and was related to the degree of esterification. Specifically, the results of rheological properties and particle size indicated that low-ester pectin improved the viscoelasticity of gluten and promoted gluten aggregation. Thermal properties revealed that enthalpy of gluten added with low-ester pectin (37%) increased from 92.96 J/g to 95.40 J/g during heating process. Structurally, the fluorescence intensity and surface hydrophobicity of gluten added with low-ester pectin (37%) were lower than those added with high-ester pectin (73%). In addition, low-ester pectin (37%) significantly increased the disulfide bond content (from 15.31 μmol/g to 18.06 μmol/g) and maintained β-sheet content of gluten compared with gluten alone at 95 °C, indicating that low-ester pectin was more likely to induce gluten aggregation. However, scanning electron microscope showed that the gluten added with low-ester pectin (46%) exhibited a denser network structure at 95 °C than that added with low-ester pectin (37%). These results will provide a theoretical base for the regulation of gluten aggregation and the quality of gluten-based products by pectin with different esterification degree.
Page 1 of 84
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 84
Go to

Recursos selecionados

  • Application Note
    Using the BAT-1 autotitrator to measure the zeta potentials of Al2O3 at different pH

    2023-06-08

    Using the BAT-1 autotitrator to measure the zeta potentials of Al2O3 at different pH

    bigClick
  • Application Note
    Using the BAT-1 autotitrator to measure the zeta potentials of TiO2 at different pH

    2023-06-02

    Using the BAT-1 autotitrator to measure the zeta potentials of TiO2 at different pH

    bigClick
  • Application Note
    Copolymer Latex particle Size and Zeta Potential analysis

    2022-01-12

    Measuring the Sizes and Zeta Potentials of Copolymer Latex Samples

    bigClick

Mais recursos

Analisador de tamanho de partículas relacionado

  • BeNano 180 Zeta Pro

    BeNano 180 Zeta Pro

    Nanoparticle Size and Zeta Potential Analyzer

    Technology: Dynamic Light Scattering, Electrophoretic Light Scattering, Static Light Scattering

  • Bettersizer 2600

    Bettersizer 2600

    Laser Diffraction Particle Size Analyzer

    Measurement range: 0.02 - 2,600μm (Wet dispersion)

    Measurement range: 0.1 - 2,600μm (Dry dispersion)

    Measurement range: 2 - 3,500μm (Dynamic imaging)

  • BeDensi T Pro Series

    BeDensi T Pro Series

    Tapped Density Tester with a Wallet-Friendly Solution

    Number of Workstations: 1-3

    Tapping Speed: 100 - 300 taps/min

    Repeatability: ≤1% variation

  • BeDensi B1 Bulk Density Tester

    BeDensi B1

    Bulk Density Tester

    Measurement: Bulk Density

    Compliance with GB/T 16913

  • BeDensi-B1-S-Scott-Volumeter

    BeDensi B1-S

    Scott Volumeter

    Measurement: Bulk Density

    Compliance with USP, Ph. Eur., ASTM, and ISO standards

  • PowderPro A1

    Automatic Powder Characteristics Tester

    Operation Mode: Automatic

    Tapping Speed: 50 - 300 taps/min

    Repeatability: ≤3% variation

  • BT-Online1 online particle size analyzer for dry powder

    BT-Online1

    Online Particle Size Analyzer

    Dispersion type: Dry

    Measurement range: 0.1 - 1,000μm

    Accuracy: ≤1% (D50 of certified reference material)

  • BeVision D2

    BeVision D2

    Dynamic Image Analyzer

    Dispersion type: Dry

    Measurement range: 30 - 10,000μm

    Technology: Dynamic Image Analysis