ホーム > 製品 > BeVision D2

BeVision D2

お見積依頼 連絡販売
パンフレットをダウンロード

BeVision D2は、動的画像解析法を採用した粒子径・粒子形状分析装置です。30 µmから10 mmまでの幅広い測定範囲に対応し、粒子径分布や粒子形状の測定が可能です。特に乾式測定を用いることで、粗大粒子やバルク粒子の特性評価を行うことができます。高速CCDカメラと高性能なソフトウェアを搭載しており、毎分1万個以上の粒子を検出することが可能です。このため、短時間で高い再現性を持った粒子分析を実現します。

機能と利点

  • 粒子径測定範囲:30 - 10,000 µm
  • 24種類の粒子径と形状情報を取得
  • リアルタイムでの測定結果表示
  • 重なり合う粒子の自動識別機能
  • 高効率なサンプラーシステム
  • 毎分1万個以上の粒子を検出可能
  • 使いやすいソフトウェア
  • 篩分けによる粒子径分布測定結果と高いデータ互換性

ビデオ

How to Install and Operate BeVision D2 Video play

BeVision D2 | A Precise Vision of Particles Video stop

What is Image Analysis? Fundamentals of BeVision Series Video stop

Overview of BeVision Series | Precision in Particle Vision Video stop

概要

動的画像解析装置・乾式測定対応

 

BeVision D2は、動的画像解析法を採用した粒子径・粒子形状分析装置で、30 μmから10 mmの幅広い測定範囲に対応します。乾式測定によって、粗大粒子やバルク粒子の特性評価が可能です。高速CCDカメラと高性能ソフトウェアの搭載により、毎分1万個以上の粒子を検出し、短時間で高い再現性を提供します。

 

装置概要・メリット 

  • 並行処理技術:リアルタイムでの測定結果表示が可能。
  • 高速CCDカメラ:120 FPSの画像出力と超短時間露光機能により、被写体ブレを防止。
  • 粒子の自動識別機能:重なり合う粒子を自動的に識別し、測定精度を向上。
  • 高効率サンプラーシステム:電磁フィーダーにより試料を振動させて自然落下させ、測定エリアに供給。特に大粒子の測定に最適。
  • 篩分けとのデータ互換性:粒子径分布測定結果は、篩分けとの高い互換性を持ちます。

 

測定可能な項目

 

  • 粒子径解析パラメータ

等価直径(Equivalent diameters): 投影面積円相当径、投影周長円相当径;

フェレー径(Feret diameters):フェレー最大径、フェレー最小径;

マーチン径Martin diameters):マーチン最大径、マーチン最小径;

ルジャンドルの慣性楕円(Legendre ellipse):ルジャンドルの慣性楕円の長軸、ルジャンドルの慣性楕円の短軸;

 

  • 粒子形状解析パラメータ

2方向の解析:アスペクト比(aspect ratio)、縦横比(L/W ratio)、楕円比(ellipse ratio)

真円度と矩形度: 円形度(Circularity)、不規則性(irregularity)、コンパクト度(compactness)、エクステント(extent)、かさ指数(box ratio)

輪郭の凹凸: 凹み度(Concavity)、凸度(convexity)、充実度(solidity);

細長い粒子:長短度(Elongation)、直線度(straightness);

 

BeVision D2 hardware

操作性の高いBeVisionソフトウェア


•  評価項目が充実

粒子径に関する11項目、形状の13項目、単粒子画像など。

• 全自動操作

画像処理、粒子同定、粒子分析、粒子情報統計などを自動に行えます。

• 重なり合う粒子を識別可能

重なり合う粒子や凝集体を識別することで、測定結果への干渉を回避します。

• 粒子ひとつひとつを観察可能

不規則な形状を持つ粒子が、普通の粒子か凝集体かを判断するのに役立ちます。

• 様々な表示方法

頻度分布図、累積分布図、ヒストグラム、散布図などを通じて統計解析結果が表示出来ます。

• キャリブレーション機能

粒子に応じて倍率とピントを合わせることができるため、正確で精度の高い測定が可能です。

• 再解析機能

保存された粒子画像を再分析し、元のデータとは別に新規記録を作成することができます。

• 準拠性

測定結果はISO 9276-6:2008に準拠しています。

 

BeVisionソフトウェア

BeVision D2 Applications

 

アプリケーション例

 

BeVision D2 Applications

 

*BT-802 Pro分散器(オプション)を導入することで湿式分散・解析が可能になります。詳細はお問い合わせください。

Citations

  • Bettersizer 2600

    Functional redundancy as an indicator for evaluating functional diversity of macrobenthos under the mussel raft farm near Gouqi Island

    DOI: 10.1016/j.aquaculture.2023.740024 Read Article Go logo
    Zhejiang Ocean University | 2024
    Biological traits analysis (BTA) helps to evaluate the effects of different environmental variables on the traits-based functional composition of macrobenthos. However, research on functional traits of macrobenthos under mussel farming is limited. We investigated the spatial and temporal response of the benthic system in terms of taxonomic and functional diversity to environmental variables of farming and natural stressors resulting from suspended mussel farming near Gouqi Island of eastern China Sea. The functional traits of macrobenthic assemblages under mussel farming were characterized by “medium adult body size”, “vermiform body form”, “high flexibility”, “infauna”, “semi-motile”, “gonochoristic”, “surface deposit-feeders”, “carnivores”, “semi-motile burrowers”, and “tube-dwellers”. Functional redundancy was stable in response to mussel farming stresses among seasons, whereas species diversity showed efficient to evaluate natural variables. Functional diversity was significantly affected by farming stressors rather than natural variables, Further analysis using multivariate methods together with continuous monitoring were highlighted to evaluate the impacts of mussel farming. Our results reinforce the importance of macrobenthic species and functional traits analysis to evaluate human stresses driven impacts in offshore ecosystems. By analysing the environmental variables with different sources, independently, we concluded the main effects of human pressures on macrobenthic community. Such distinction could be particularly effective to isolate variable environmental descriptors and evaluate their effects on functional diversity, making the current approach promising for the evaluation of ecological effects of anthropogenic stressors in aquaculture areas.
  • Bettersizer 2600

    Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas

    DOI: 10.1016/j.seppur.2023.125621 Read Article Go logo
    China University of Petroleum | 2024

    In this study, various types of degradation as well as attrition which are possibly encountered in a circulating fluidized bed temperature swing adsorption (CFB-TSA) process, were conducted experimentally to evaluate the stability of a resin-based solid amine sorbent. Other characterizations methods, such as elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR) etc. were applied to further reveal the degradation mechanisms. The results showed that thermal degradation occurs from 140–160 °C due to the decomposition of amine group. The CO2-induced degradation occurs from a higher temperature of 160–180 °C accompanied by the production of urea. Hydrothermal stability is good below 130 °C, but the ionic impurities in steam crystalized on particle surface can accelerate the degradation. Oxidative degradation is the most harmful, which starts at a lower temperature of 70–80 °C with the formation of aldehyde. The existence of H2O in atmosphere can alleviate the oxidative and CO2-induced degradations. The employed sorbent has a very low attrition index of 0.05, which is 1–2 orders lower than typical commercial fluidized bed catalysts. Based on the results of stability evaluation, some design suggestions for proper utilization of this sorbent or other similar resin-based sorbents have been provided in an industrial CFB-TSA process.

  • Bettersizer 2600

    De-branching of starch molecules enhanced the complexation with chitosan and its potential utilization for delivering hydrophobic compounds

    DOI: 10.1016/j.foodhyd.2023.109498 Read Article Go logo
    Shihezi University | 2024
    The current study aimed to prepare the complexes between debranched-waxy corn starch and chitosan polymers (DBS-CS), and then investigated their corresponding structural characteristics, rheological property and potent application in Pickering emulsion. The results indicated that the existence of chitosan significantly inhibited starch short-range molecular rearrangement for all DBS-CS samples, which was manipulated by both debranching treatment and chitosan content. Interestingly, this is the first study to reveal that the outstanding peak at 1.8 ppm in 1H NMR spectrum for sample DBS-CS was gradually shifted towards a lower-field region following an increased chitosan content. Moreover, the debranching treatment shifted the crystallinity pattern from A-type to B-type and the relative crystallinity of DBS-CS decreased gradually with the increased content of CS. All samples had a pseudoplastic fluid and shear-thinning behavior with an enhanced shear resistance following the complexation. The DBS-CS was applied in a Pickering emulsion for showing a greater emulsifying stability and a lower gel strength than native NS-CS prepared emulsion. Importantly, the encapsulation ability of curcumin in the DBS-CS emulsion was significantly improved, followed by an increase of 15.45% for its corresponding bioavailability compared to the control. Therefore, this study might highlight a potential carrier for delivering the bioactive substances in a green pattern.
  • Bettersizer 2600

    Heat-induced aggregation behavior of wheat gluten after adding citrus pectin with different esterification degree

    DOI: 10.1016/j.foodhyd.2023.109420 Read Article Go logo
    Gansu Agricultural University | 2024
    Wheat gluten aggregation during heat treatment is beneficial to the final quality of gluten-based products. Exogenous pectin can affect gluten aggregation. However, the effect of pectin with different degrees of esterification on the heat-induced aggregation behavior of gluten and its possible mechanism are still unclear. Thus, the heat-induced aggregation behavior of gluten after adding pectin with different esterification degree was studied in this study. When the temperature was raised from 25 °C to 95 °C, pectin affected gluten aggregation and was related to the degree of esterification. Specifically, the results of rheological properties and particle size indicated that low-ester pectin improved the viscoelasticity of gluten and promoted gluten aggregation. Thermal properties revealed that enthalpy of gluten added with low-ester pectin (37%) increased from 92.96 J/g to 95.40 J/g during heating process. Structurally, the fluorescence intensity and surface hydrophobicity of gluten added with low-ester pectin (37%) were lower than those added with high-ester pectin (73%). In addition, low-ester pectin (37%) significantly increased the disulfide bond content (from 15.31 μmol/g to 18.06 μmol/g) and maintained β-sheet content of gluten compared with gluten alone at 95 °C, indicating that low-ester pectin was more likely to induce gluten aggregation. However, scanning electron microscope showed that the gluten added with low-ester pectin (46%) exhibited a denser network structure at 95 °C than that added with low-ester pectin (37%). These results will provide a theoretical base for the regulation of gluten aggregation and the quality of gluten-based products by pectin with different esterification degree.
Page 1 of 84
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 84
Go to

厳選されたリソース

その他の資料

関連イメージアナライザー

  • Bettersizer S3 Plus

    Bettersizer S3 Plus

    粒子径・粒子形状分析装置

    測定範囲:0.01~3,500μm(レーザ回折・散乱法による)

    測定範囲:2~3,500μm(動的画像解析法による)

  • Bettersizer 2600

    Bettersizer 2600

    あらゆるニーズに応える粒子解析装置

    測定範囲:0.02~2,600μm(湿式分散)

    測定範囲:0.1~2,600μm(乾式分散)

    測定範囲:2~3,500 μm(動的画像解析)

  • BeVision M1

    BeVision M1

    自動粒子径・粒子形状解析装置

    湿式と乾式測定に対応可能

    測定範囲:1〜10,000μm

    静的画像解析法

  • Bevision-S1 Classical and Versatile Static Image Analyzer

    BeVision S1

    クラシックな粒子画像分析装置

    幅広いアプリケーションへ対応可能

    測定範囲:1〜3,000μm

    静的画像解析