ホーム > 製品 > Bettersizer S3 Plus

Bettersizer S3 Plus

お見積依頼 連絡販売
パンフレットをダウンロード

Bettersizer S3 Plusは、レーザー回折・散乱法と動的画像解析を1台にまとめた装置で、0.01μmから3500μm範囲の粒子径と粒子形状を測定することができます。超微粒子や特大粒子に対する抜群の感度と優れた分解能により、科学研究に熱心な研究者にとって、最強の粒子径・粒子形状分析装置となっています。

機能と利点

  • 測定範囲:0.01~3,500μm(レーザ回折・散乱法による)、2~3,500μm(動的画像解析による)
  • 粒子径と粒子形状を同時に測定
  • 特許取得済み技術 DLOIOSシステム (デュアルフーリエレンズ・斜め方向の光の入射)
  • 2つのCCDカメラによりリアルタイムで粒子画像を取得 最大3500μmの粗大粒子を検知可能
  • 屈折率測定ツールを搭載し、光学パラメーターが不明な材料の測定精度を向上させる
  • 21 CFR Part 11、ISO 13320、USP<429> 、CE に準拠。

ビデオ

Bettersizer S3 Plus | Strive for Excellence in All You See Video play

BT-A60 Autosampler | Demo Video stop

How to Install and Operate Bettersizer S3 Plus Video stop

Demo of Bettersizer S3 Plus 2-In-1 Particle Size and Shape Analyzer Video stop

Fundamentals of Bettersizer S3 Plus 2-In-1 Particle Size and Shape Analyzer Video stop

Bettersizer S3 Plus | Particle Size and Shape Analyzer Video stop

Bettersizer S3 Plus Overview | Strive for Excellence in All You See Video stop

概要

Bettersizer S3 Plus粒子径分布・粒子形状分析装置の概要

 

Bettersizer S3 Plusは、測定対象のサンプルの画像をキャプチャするために2台の高速CCDカメラ(0.5Xおよび10X倍率)をさらに備えた粒子径・形状分析装置です。測定中、溶媒に分散している粒子は、2つの測定キュベットにポンプで送られます。 最初に、短波長レーザー光(532 nm)がサンプルに照射され、粒子サイズに応じて散乱します。 96個の検出器は、0.02°〜165°の角度範囲で光信号を検出し、レーザー回折・散乱式の粒子径解析に用いられます。CCDカメラは2番目のキュベットを介して連続的に画像を取得し、画像データは2〜3500 µmの範囲の粒子の画像解析に使用されます。

 

 

特許取得済みのデュアルレンズテクノロジー-DLOIOS

 

DLOIOSは、フーリエ光学系をベースにBettersizeが特許を取得した新技術です。
レーザーとサンプルセルの間に追加のレンズ(レンズ2)を配置すると、発散したレーザービームが平行ビームに変換され、後方散乱光を検出できます。
1つのレーザーのみを使用すると、一貫した波長、斜めの光の入射で連続的なスペクトラム拡散が得られ、この特別な設計により、0.02°〜165°の角度範囲で検出できます。 DLOIOSテクノロジーは、10 nmから3500ミクロンのサイズ範囲の粒子の信頼性の高い測定を保証します。

 

CCDカメラ技術

 

Bettersizer S3 Plusの光学イメージングシステムは、2つの高速カメラと高精度テレセントリックレンズで構成されており、光学的スミアリングなしで1分あたり10,000個を超える粒子をキャプチャして評価することができます。 両方のカメラを個別に、または同時に使用して、画像分析用のサンプルを観察できます。

 

ISO 13320に準拠したレーザー回折法

 

微粒子(ナノメートル、サブミクロン、ミクロン)の粒子径分布は、DLOIOS技術で正確に決定されます。 幅広い散乱光測定範囲(0.02°-165°)は、多数の検出器(96)とともに実現されます。 評価は、粒子径と光学特性に依存するフラウンホーファーまたはMie理論に基づいています。粒子サイズ測定に役立つツールには、分散効率を確認するための視覚補助としての2台のカメラと、光学パラメーターが不明な材料の屈折率測定ツールがあります。

 

組み合わせ:レーザー回折・散乱+動的画像解析式

 

レーザー回折・散乱+動的画像解析式の組み合わせにより、測定可能な粒子径の範囲が広く、粗い粒子を含むサンプルの場合、レーザー回折の測定と0.5X CCDカメラの組み合わせを特にお勧めします。 微細な母集団の存在下で3%未満の大きな粒子も検出できます。

 

粒子形状測定

 

粒子形状分析には、0.5Xと10Xの2つの高速CCDカメラを利用できます。 それらは2〜3500 µmの粒径範囲をカバーします。 粒子形状分析は、粒子径が4 µmより大きい場合に使用されます。 測定中、粒子は継続的に撮影され、10,000粒子/分の速度で統計的に分類されます。 カメラは個別に、または組み合わせて使用できます。 標準の等価直径(投影面積円相当径、投影周長円相当径)に加えて、アスペクト比、長径/幅径、円形度、粒子の周囲長などの特別なパラメーターが計算されます。

 

Bettersizer S3 Plus粒子径分布装置のアプリケーション


Applications of Bettersizer S3 Plus

 

Bettersizer S3 Plusのオプション装置

Bettersizer S3 Plus Applications

Citations

  • Bettersizer 2600

    Functional redundancy as an indicator for evaluating functional diversity of macrobenthos under the mussel raft farm near Gouqi Island

    DOI: 10.1016/j.aquaculture.2023.740024 Read Article Go logo
    Zhejiang Ocean University | 2024
    Biological traits analysis (BTA) helps to evaluate the effects of different environmental variables on the traits-based functional composition of macrobenthos. However, research on functional traits of macrobenthos under mussel farming is limited. We investigated the spatial and temporal response of the benthic system in terms of taxonomic and functional diversity to environmental variables of farming and natural stressors resulting from suspended mussel farming near Gouqi Island of eastern China Sea. The functional traits of macrobenthic assemblages under mussel farming were characterized by “medium adult body size”, “vermiform body form”, “high flexibility”, “infauna”, “semi-motile”, “gonochoristic”, “surface deposit-feeders”, “carnivores”, “semi-motile burrowers”, and “tube-dwellers”. Functional redundancy was stable in response to mussel farming stresses among seasons, whereas species diversity showed efficient to evaluate natural variables. Functional diversity was significantly affected by farming stressors rather than natural variables, Further analysis using multivariate methods together with continuous monitoring were highlighted to evaluate the impacts of mussel farming. Our results reinforce the importance of macrobenthic species and functional traits analysis to evaluate human stresses driven impacts in offshore ecosystems. By analysing the environmental variables with different sources, independently, we concluded the main effects of human pressures on macrobenthic community. Such distinction could be particularly effective to isolate variable environmental descriptors and evaluate their effects on functional diversity, making the current approach promising for the evaluation of ecological effects of anthropogenic stressors in aquaculture areas.
  • Bettersizer 2600

    Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas

    DOI: 10.1016/j.seppur.2023.125621 Read Article Go logo
    China University of Petroleum | 2024

    In this study, various types of degradation as well as attrition which are possibly encountered in a circulating fluidized bed temperature swing adsorption (CFB-TSA) process, were conducted experimentally to evaluate the stability of a resin-based solid amine sorbent. Other characterizations methods, such as elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR) etc. were applied to further reveal the degradation mechanisms. The results showed that thermal degradation occurs from 140–160 °C due to the decomposition of amine group. The CO2-induced degradation occurs from a higher temperature of 160–180 °C accompanied by the production of urea. Hydrothermal stability is good below 130 °C, but the ionic impurities in steam crystalized on particle surface can accelerate the degradation. Oxidative degradation is the most harmful, which starts at a lower temperature of 70–80 °C with the formation of aldehyde. The existence of H2O in atmosphere can alleviate the oxidative and CO2-induced degradations. The employed sorbent has a very low attrition index of 0.05, which is 1–2 orders lower than typical commercial fluidized bed catalysts. Based on the results of stability evaluation, some design suggestions for proper utilization of this sorbent or other similar resin-based sorbents have been provided in an industrial CFB-TSA process.

  • Bettersizer 2600

    De-branching of starch molecules enhanced the complexation with chitosan and its potential utilization for delivering hydrophobic compounds

    DOI: 10.1016/j.foodhyd.2023.109498 Read Article Go logo
    Shihezi University | 2024
    The current study aimed to prepare the complexes between debranched-waxy corn starch and chitosan polymers (DBS-CS), and then investigated their corresponding structural characteristics, rheological property and potent application in Pickering emulsion. The results indicated that the existence of chitosan significantly inhibited starch short-range molecular rearrangement for all DBS-CS samples, which was manipulated by both debranching treatment and chitosan content. Interestingly, this is the first study to reveal that the outstanding peak at 1.8 ppm in 1H NMR spectrum for sample DBS-CS was gradually shifted towards a lower-field region following an increased chitosan content. Moreover, the debranching treatment shifted the crystallinity pattern from A-type to B-type and the relative crystallinity of DBS-CS decreased gradually with the increased content of CS. All samples had a pseudoplastic fluid and shear-thinning behavior with an enhanced shear resistance following the complexation. The DBS-CS was applied in a Pickering emulsion for showing a greater emulsifying stability and a lower gel strength than native NS-CS prepared emulsion. Importantly, the encapsulation ability of curcumin in the DBS-CS emulsion was significantly improved, followed by an increase of 15.45% for its corresponding bioavailability compared to the control. Therefore, this study might highlight a potential carrier for delivering the bioactive substances in a green pattern.
  • Bettersizer 2600

    Heat-induced aggregation behavior of wheat gluten after adding citrus pectin with different esterification degree

    DOI: 10.1016/j.foodhyd.2023.109420 Read Article Go logo
    Gansu Agricultural University | 2024
    Wheat gluten aggregation during heat treatment is beneficial to the final quality of gluten-based products. Exogenous pectin can affect gluten aggregation. However, the effect of pectin with different degrees of esterification on the heat-induced aggregation behavior of gluten and its possible mechanism are still unclear. Thus, the heat-induced aggregation behavior of gluten after adding pectin with different esterification degree was studied in this study. When the temperature was raised from 25 °C to 95 °C, pectin affected gluten aggregation and was related to the degree of esterification. Specifically, the results of rheological properties and particle size indicated that low-ester pectin improved the viscoelasticity of gluten and promoted gluten aggregation. Thermal properties revealed that enthalpy of gluten added with low-ester pectin (37%) increased from 92.96 J/g to 95.40 J/g during heating process. Structurally, the fluorescence intensity and surface hydrophobicity of gluten added with low-ester pectin (37%) were lower than those added with high-ester pectin (73%). In addition, low-ester pectin (37%) significantly increased the disulfide bond content (from 15.31 μmol/g to 18.06 μmol/g) and maintained β-sheet content of gluten compared with gluten alone at 95 °C, indicating that low-ester pectin was more likely to induce gluten aggregation. However, scanning electron microscope showed that the gluten added with low-ester pectin (46%) exhibited a denser network structure at 95 °C than that added with low-ester pectin (37%). These results will provide a theoretical base for the regulation of gluten aggregation and the quality of gluten-based products by pectin with different esterification degree.
Page 1 of 84
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 84
Go to

厳選されたリソース

その他の資料

お客様のお声

素晴らしい結果、素晴らしいグラフ、素晴らしいデータ。

Bettersize S3 plusは、グラファイト粒子のサイズと形状の分布を分析するのにとても良い装置です。私はグラファイト粒子の形状を得ることができ、成形プロセスで使用するパラメータに関連するグラフや統計を作成することができます。また、価格とカスタマーサービスも素晴らしいです。Bettersizeに感謝しています。

Samuel Quéméré

start end
SelectScience

関連粒度分布測定機

  • BeScan Lab stability analyzer

    BeScan Lab

    分散安定性評価装置

    完全非破壊測定

    最大95%v/vの高濃度分散体の評価が可能

    80℃まで加熱温調機能を搭載

  • BeNano 180 Zeta Pro

    BeNano 180 Zeta Pro

    粒子径・ゼータ電位・分子量測定装置

    40%w/vまでの高濃度試料を測定可能

    極少量サンプル(3-5μL)対応可

    幅広い温度範囲:₋15℃~110℃

  • Bettersizer 2600

    Bettersizer 2600

    あらゆるニーズに応える粒子解析装置

    測定範囲:0.02~2,600μm(湿式分散)

    測定範囲:0.1~2,600μm(乾式分散)

    測定範囲:2~3,500 μm(動的画像解析)

  • Bettersizer ST

    Bettersizer ST

    品質管理向け一体型モデル

    湿式分散

    測定範囲:0.1〜1,000μm

    再現性誤差:≤1%

  • BeVision D2

    BeVision D2

    動的画像解析装置

    乾式測定対応

    測定範囲:30〜10,000μm

    オプション機能:湿式分散(分散器BT-802 Proが必要)

  • BeVision M1

    BeVision M1

    自動粒子径・粒子形状解析装置

    湿式と乾式測定に対応可能

    測定範囲:1〜10,000μm

    静的画像解析法

  • Bevision-S1 Classical and Versatile Static Image Analyzer

    BeVision S1

    クラシックな粒子画像分析装置

    幅広いアプリケーションへ対応可能

    測定範囲:1〜3,000μm

    静的画像解析