bettersize
Accueil > Industries > Produits chimiques
Chemicals banner

Produits chimiques

Les instruments Bettersize sont largement utilisés pour l'étude et le contrôle de la production de la taille et de la forme des particules et des caractéristiques des poudres de produits chimiques.

 

 

Afin de développer et d'optimiser la production de matériaux chimiques, une série de propriétés physiques des produits chimiques doivent être contrôlées, notamment la taille des particules, leur forme et les caractéristiques des poudres.

 

 

Les polymères et les plastiques représentent environ la plus grande partie de la production de l'industrie chimique dans le monde. Les principaux produits sont le polyéthylène, le polypropylène, le chlorure de polyvinyle, le polyéthylène téréphtalate, le polystyrène et le polycarbonate. La mesure de la taille des particules de ces matériaux joue un rôle très important lors de leur production et de la recherche et du développement.

 

 

Les principaux marchés pour les plastiques sont l'emballage, suivi par la construction de maisons, les conteneurs, les appareils, les tuyaux, le transport, les jouets et les jeux.

 

Le produit polymère le plus volumineux, le polyéthylène (PE), est principalement utilisé dans les films d'emballage, les bouteilles de lait, les conteneurs et les tuyaux.
Le polychlorure de vinyle (PVC), un autre produit à grand volume, est principalement utilisé pour fabriquer des tuyaux destinés aux marchés de la construction ainsi que des matériaux de bardage, de transport et d'emballage.
Lepolypropylène (PP), similaire en volume au PVC, est utilisé sur des marchés allant de l'emballage, des appareils électroménagers et des conteneurs aux vêtements et à la moquette.
Lepolystyrène (PS), autre plastique de grand volume, est utilisé principalement pour les appareils électroménagers, les emballages et surtout comme élément de sécurité pour la protection dans les voitures afin de réduire les conséquences d'un accident.
Les principales fibres synthétiques comprennent le polyester, le nylon, le polypropylène et les acryliques, avec des applications comprenant l'habillement, l'ameublement et d'autres utilisations industrielles et grand public.

 

 

Les autres produits chimiques comprennent :
le caoutchouc synthétique, les surfactants, les colorants et les pigments, la térébenthine, les résines, le noir de carbone, les explosifs et les produits en caoutchouc.
Les produits chimiques inorganiques comprennent le sel, la soude caustique, le carbonate de soude, les acides (tels que l'acide nitrique, l'acide phosphorique et l'acide sulfurique) et le dioxyde de titane.
Les engrais constituent la plus petite catégorie, comprenant les phosphates, l'ammoniac et les produits chimiques à base de potasse.

 

 

Les équipements utilisés pour la fabrication des matières plastiques comprennent les moules à injection, les moules à compression, les extrudeuses et les moules rotatifs. Tous ces procédés ont en commun l'utilisation d'un granulé ou d'une poudre comme matériau de départ. Les caractéristiques de la matière première doivent répondre à certains critères, tels que le point de fusion. En outre, la composition chimique, la résistance à la flexion, la résistance à la compression, la résistance aux chocs, la densité, la résistance chimique et la résistance à la traction confèrent à l'article obtenu ses caractéristiques. La taille des particules contribue de manière significative à la mise en œuvre du polymère. La fluidité à partir de la trémie et la vitesse de fusion à chaud ont un effet direct sur la vitesse du processus. Les particules (granulés) sont généralement produites dans une fourchette de 200 à 2 000 microns pour le transport et l'application.

 

 

Afin de promouvoir le développement de l'industrie, de meilleures méthodes de mesure de la taille des particules seront nécessaires. Quel type de méthodes d'analyse de la taille des particulesmeilleures ? L'analyseur de particules laser Bettersize peut contribuer au développement des produits chimiques dans les aspects suivants :

 

Mesure de la taille et de la forme des particules, des caractéristiques des poudres et d'autres propriétés des matériaux.
Mesure des produits de référence pour s'assurer de leur performance et de leur stabilité.
Contrôler la qualité pour garantir la conformité aux normes réglementaires.
développer des matériaux d'emballage appropriés.

 

En savoir plus

Citations

  • Bettersizer 2600

    Functional redundancy as an indicator for evaluating functional diversity of macrobenthos under the mussel raft farm near Gouqi Island

    DOI: 10.1016/j.aquaculture.2023.740024 Read Article Go logo
    Zhejiang Ocean University | 2024
    Biological traits analysis (BTA) helps to evaluate the effects of different environmental variables on the traits-based functional composition of macrobenthos. However, research on functional traits of macrobenthos under mussel farming is limited. We investigated the spatial and temporal response of the benthic system in terms of taxonomic and functional diversity to environmental variables of farming and natural stressors resulting from suspended mussel farming near Gouqi Island of eastern China Sea. The functional traits of macrobenthic assemblages under mussel farming were characterized by “medium adult body size”, “vermiform body form”, “high flexibility”, “infauna”, “semi-motile”, “gonochoristic”, “surface deposit-feeders”, “carnivores”, “semi-motile burrowers”, and “tube-dwellers”. Functional redundancy was stable in response to mussel farming stresses among seasons, whereas species diversity showed efficient to evaluate natural variables. Functional diversity was significantly affected by farming stressors rather than natural variables, Further analysis using multivariate methods together with continuous monitoring were highlighted to evaluate the impacts of mussel farming. Our results reinforce the importance of macrobenthic species and functional traits analysis to evaluate human stresses driven impacts in offshore ecosystems. By analysing the environmental variables with different sources, independently, we concluded the main effects of human pressures on macrobenthic community. Such distinction could be particularly effective to isolate variable environmental descriptors and evaluate their effects on functional diversity, making the current approach promising for the evaluation of ecological effects of anthropogenic stressors in aquaculture areas.
  • Bettersizer 2600

    Degradation characteristics and utilization strategies of a covalent bonded resin-based solid amine during capturing CO2 from flue gas

    DOI: 10.1016/j.seppur.2023.125621 Read Article Go logo
    China University of Petroleum | 2024

    In this study, various types of degradation as well as attrition which are possibly encountered in a circulating fluidized bed temperature swing adsorption (CFB-TSA) process, were conducted experimentally to evaluate the stability of a resin-based solid amine sorbent. Other characterizations methods, such as elemental analysis (EA), Fourier transform infrared spectroscopy (FTIR) etc. were applied to further reveal the degradation mechanisms. The results showed that thermal degradation occurs from 140–160 °C due to the decomposition of amine group. The CO2-induced degradation occurs from a higher temperature of 160–180 °C accompanied by the production of urea. Hydrothermal stability is good below 130 °C, but the ionic impurities in steam crystalized on particle surface can accelerate the degradation. Oxidative degradation is the most harmful, which starts at a lower temperature of 70–80 °C with the formation of aldehyde. The existence of H2O in atmosphere can alleviate the oxidative and CO2-induced degradations. The employed sorbent has a very low attrition index of 0.05, which is 1–2 orders lower than typical commercial fluidized bed catalysts. Based on the results of stability evaluation, some design suggestions for proper utilization of this sorbent or other similar resin-based sorbents have been provided in an industrial CFB-TSA process.

  • Bettersizer 2600

    De-branching of starch molecules enhanced the complexation with chitosan and its potential utilization for delivering hydrophobic compounds

    DOI: 10.1016/j.foodhyd.2023.109498 Read Article Go logo
    Shihezi University | 2024
    The current study aimed to prepare the complexes between debranched-waxy corn starch and chitosan polymers (DBS-CS), and then investigated their corresponding structural characteristics, rheological property and potent application in Pickering emulsion. The results indicated that the existence of chitosan significantly inhibited starch short-range molecular rearrangement for all DBS-CS samples, which was manipulated by both debranching treatment and chitosan content. Interestingly, this is the first study to reveal that the outstanding peak at 1.8 ppm in 1H NMR spectrum for sample DBS-CS was gradually shifted towards a lower-field region following an increased chitosan content. Moreover, the debranching treatment shifted the crystallinity pattern from A-type to B-type and the relative crystallinity of DBS-CS decreased gradually with the increased content of CS. All samples had a pseudoplastic fluid and shear-thinning behavior with an enhanced shear resistance following the complexation. The DBS-CS was applied in a Pickering emulsion for showing a greater emulsifying stability and a lower gel strength than native NS-CS prepared emulsion. Importantly, the encapsulation ability of curcumin in the DBS-CS emulsion was significantly improved, followed by an increase of 15.45% for its corresponding bioavailability compared to the control. Therefore, this study might highlight a potential carrier for delivering the bioactive substances in a green pattern.
  • Bettersizer 2600

    Heat-induced aggregation behavior of wheat gluten after adding citrus pectin with different esterification degree

    DOI: 10.1016/j.foodhyd.2023.109420 Read Article Go logo
    Gansu Agricultural University | 2024
    Wheat gluten aggregation during heat treatment is beneficial to the final quality of gluten-based products. Exogenous pectin can affect gluten aggregation. However, the effect of pectin with different degrees of esterification on the heat-induced aggregation behavior of gluten and its possible mechanism are still unclear. Thus, the heat-induced aggregation behavior of gluten after adding pectin with different esterification degree was studied in this study. When the temperature was raised from 25 °C to 95 °C, pectin affected gluten aggregation and was related to the degree of esterification. Specifically, the results of rheological properties and particle size indicated that low-ester pectin improved the viscoelasticity of gluten and promoted gluten aggregation. Thermal properties revealed that enthalpy of gluten added with low-ester pectin (37%) increased from 92.96 J/g to 95.40 J/g during heating process. Structurally, the fluorescence intensity and surface hydrophobicity of gluten added with low-ester pectin (37%) were lower than those added with high-ester pectin (73%). In addition, low-ester pectin (37%) significantly increased the disulfide bond content (from 15.31 μmol/g to 18.06 μmol/g) and maintained β-sheet content of gluten compared with gluten alone at 95 °C, indicating that low-ester pectin was more likely to induce gluten aggregation. However, scanning electron microscope showed that the gluten added with low-ester pectin (46%) exhibited a denser network structure at 95 °C than that added with low-ester pectin (37%). These results will provide a theoretical base for the regulation of gluten aggregation and the quality of gluten-based products by pectin with different esterification degree.
Page 1 of 84
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 84
Go to

Ressources sélectionnées

Plus de ressources

Analyseur de taille de particules apparenté

  • BeNano 180 Zeta Pro

    BeNano 180 Zeta Pro

    Nanoparticle Size and Zeta Potential Analyzer

    Technology: Dynamic Light Scattering, Electrophoretic Light Scattering, Static Light Scattering

  • Bettersizer 2600

    Bettersizer 2600

    Laser Diffraction Particle Size Analyzer

    Measurement range: 0.02 - 2,600μm (Wet dispersion)

    Measurement range: 0.1 - 2,600μm (Dry dispersion)

    Measurement range: 2 - 3,500μm (Dynamic imaging)

  • BeDensi T Pro Series

    BeDensi T Pro Series

    Tapped Density Tester with a Wallet-Friendly Solution

    Number of Workstations: 1-3

    Tapping Speed: 100 - 300 taps/min

    Repeatability: ≤1% variation

  • BeDensi B1 Bulk Density Tester

    BeDensi B1

    Bulk Density Tester

    Measurement: Bulk Density

    Compliance with GB/T 16913

  • BeDensi-B1-S-Scott-Volumeter

    BeDensi B1-S

    Scott Volumeter

    Measurement: Bulk Density

    Compliance with USP, Ph. Eur., ASTM, and ISO standards

  • PowderPro A1

    Automatic Powder Characteristics Tester

    Operation Mode: Automatic

    Tapping Speed: 50 - 300 taps/min

    Repeatability: ≤3% variation

  • BT-Online1 online particle size analyzer for dry powder

    BT-Online1

    Online Particle Size Analyzer

    Dispersion type: Dry

    Measurement range: 0.1 - 1,000μm

    Accuracy: ≤1% (D50 of certified reference material)

  • BeVision D2

    BeVision D2

    Dynamic Image Analyzer

    Dispersion type: Dry

    Measurement range: 30 - 10,000μm

    Technology: Dynamic Image Analysis